Zur JKU Startseite
Institut für Biophysik
Was ist das?

Institute, Schools und andere Einrichtungen oder Angebote haben einen Webauftritt mit eigenen Inhalten und Menüs.

Um die Navigation zu erleichtern, ist hier erkennbar, wo man sich gerade befindet.


Doctoral School:
Molecular Transport and Recognition

The joint doctoral school Molecular Transport and Recognition at the Faculty of Engineering and Natural Sciences and the Faculty of Medicine of Johannes Kepler University Linz (JKU) will launch on 1 September 2025 under the coordination of Prof. Peter Pohl. Funded by the Austrian Science Fund (FWF), the school brings together leading researchers in biophysics, chemistry, physics, and medicine to explore the molecular mechanisms that drive life.

How do molecules cross membranes? How do cells communicate? And how do these processes change in disease and aging? The program aims to train a new generation of scientists to address these fundamental questions at the interface of physics, biology, and medicine.

 

Ideal applicants hold, or are close to completing, an MSc in biophysics, physics, biochemistry, biomedical sciences, pharmacy, biology, chemistry, bioinformatics, biomedical engineering, chemical engineering, or a related discipline. Strong academic achievement, independent and analytical thinking, communication and teamwork skills, and proficiency in English are essential.

Call for PhD researchers. , öffnet eine externe URL in einem neuen Fenster

 

Group leaders

Consortium 

Kerstin Blank 

kerstin.blank(at)jku.at

Frank Müh 

Frank.Mueh(at)jku.at

Frans Mulder 

frans.mulder(at)jku.at

Maren Engelhardt 

maren.engelhardt(at)jku.at

Soyoung Lee 

soyoung.lee(at)jku.at

Peter Hinterdorfer 

Peter.Hinterdorfer(at)jku.at

Peter Pohl 

Peter.Pohl(at)jku.at

Thomas Klar 

Thomas.Klar(at)jku.at

Jakob Völk 

jakob.voelkl(at)jku.at

Susanna Zierler

susanna.zierler(at)jku.at

 

10 Fully Funded PhD Positions in Molecular Transport and Molecular Recognition

  1. Synaptopodin-associated gap junctions in ion dynamics at the AIS, öffnet eine externe URL in einem neuen Fenster – Engelhardt
    This project investigates the role of synaptopodin at the axon initial segment and its potential link to electrical and ion-based coupling via gap junctions.
  2. Structure and interaction of the intrinsically disordered protein synaptopodin, öffnet eine externe URL in einem neuen Fenster – Mulder
    The project aims to characterize the structural ensembles and binding interactions of synaptopodin to better understand its functional mechanisms.
  3. Two-pore channels regulate organellar ion homeostasis and anaphylaxis, öffnet eine externe URL in einem neuen Fenster – Zierler
    The project explores the physiological and structural role of two-pore channels in endolysosomes, with implications for anaphylaxis and organelle ion regulation.
  4. Water flux through narrow membrane channels, öffnet eine externe URL in einem neuen Fenster – Pohl
    This project investigates water permeability and coupling to ion movement through narrow channels, particularly aquaporins, using electrophysiology and advanced spectroscopy.
  5. Structure-based simulations of aquaporins and other channel proteins, öffnet eine externe URL in einem neuen Fenster – Müh
    The project uses molecular dynamics simulations to study how aquaporins and other channels regulate water and ion transport.
  6. Nanocontainer, öffnet eine externe URL in einem neuen Fenster – Klar
    This project develops optically addressable nanocontainers for the targeted release of calcium ions within cells to investigate signaling processes.
  7. Nano-scale cellular structural dynamics and mechanics during senescence and calcification, öffnet eine externe URL in einem neuen Fenster – Hinterdorfer
    The project uses high-resolution atomic force microscopy to study structural and mechanical changes in membranes during cell senescence and calcification.
  8. Mechanics at focal adhesions – towards mechanodiagnostics and -therapeutics, öffnet eine externe URL in einem neuen Fenster – Blank
    This project examines how physical forces and local membrane properties at focal adhesions influence cellular signaling and responses to mechanical stimuli.
  9. Physical property of plasma membrane and ion channel activity during senescence of cancer cells, öffnet eine externe URL in einem neuen Fenster – Lee
    The project studies how changes in membrane fluidity and lipid composition affect ion channel function and calcium signaling in aging cancer cells.
  10. Membrane phosphate transport mechanisms in vascular calcification, öffnet eine externe URL in einem neuen Fenster – Völkl
    This project investigates how plasma membrane transporters regulate phosphate and calcium homeostasis in vascular smooth muscle cells and their role in calcification.
OSZAR »